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Generalized von Smoluchowski Model of Reaction
Rates, with Reacting Particles and a Mobile Trap
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We study diffusion-limited coalescence, A+A # A, in one dimension, in the
presence of a diffusing trap. The system may be regarded as a generalization of
von Smoluchowski's model for reaction rates, in that (a) it includes reactions
between the particles surrounding the trap, and (b) the trap is mobile��two
considerations which render the model more physically relevant. As seen from
the trap's frame of reference, the motion of the particles is highly correlated,
because of the motion of the trap. An exact description of the long-time
asymptotic limit is found using the IPDF method and exploiting a ``shielding''
property of reversible coalescence that was discovered recently. In the case
where the trap also acts as a sources��giving birth to particles��the shielding
property breaks down, but we find an ``equivalence principle'': Trapping and dif-
fusion of the trap may be compensated by an appropriate rate of birth, such
that the steady state of the system is identical with the equilibrium state in the
absence of a trap.

KEY WORDS: Smoluchowski model, diffusion-limited coagulation; trapping;
nonequilibrium kinetics.

I. INTRODUCTION

Non-equilibrium kinetics of diffusion-limited reactions has been the subject
of much recent interest.(1�6) While equilibrium systems can be completely
analyzed by means of standard thermodynamics methods, and reaction-
limited processes are well described by classical rate equations, (7, 8) there
exist no such general approaches to the problem of nonequilibrium, diffu-
sion-limited reactions.
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A fundamental model for the reaction rate in diffusion-limited pro-
cesses had been presented by von Smoluchowski.(9) In this model, an ideal
spherical trap is surrounded by a swarm of Brownian particles. The rate of
absorption of particles into the spherical trap models the reaction rate. The
Smoluchowski model is limited in two important respects: (a) the particles
react with the spherical trap but not with each other, and (b) the trap itself
does not diffuse, but remains static at the origin. Both limitations are
unphysical: In real reaction processes all particles interact (and may react)
with each other, and all particles are mobile.

Several attempts have been made to remove the restriction of an
immobile trap.(10�12) The problem is complicated by the apparent correla-
tions in the motion of the surrounding particles: With a mobile trap, the
motion of the surrounding particles is highly correlated, since a step of the
trap to the left, say, in the lab frame of reference, results in an apparent
step to the right of all the surrounding particles in unison, in the trap's
frame of reference. Results are restricted to empirical formulas inspired by
numerical simulations, (10) or to a number of special cases (immobile par-
ticles;(11) short times (12)). As regards reactions between the surrounding
particles, these could hardly be considered, other than numerically, because
few models of diffusion-limited kinetics yield themselves to exact analysis.
In fact, diffusion-limited coalescence (A+A � A) and annihilation
(A+A � 0) in one dimension alone account for most of the known exact
results.(13�23)

Recently, we have studied reversible coalescence, A+A # A, on the
line and in the presence of a static trap.(24) An exact analysis is possible
with the method of interparticle distribution functions (IPDF).(25) We have
found a remarkable property of ``shielding'': The particle nearest to the trap
effectively shields the remaining particles from the trap. The steady state of
the system is uniquely characterized by the distance of the nearest particle
to the trap��all other particles remain distributed exactly as in the equi-
librium state of the system in the absence of a trap. This shielding property
persists even in the presence of a bias field (convection, or drift).

In this paper we consider reversible coalescence with a mobile trap
which diffuses with a diffusion constant DT , not necessarily equal to the
diffusion constant of the surrounding particles, D. The problem may still be
formulated with the IPDF method, in spite of the correlations induced
by the motion of the trap. The shielding property of the nearest particle
to the trap also remains in effect, and it enables us to find a complete
exact description of the distribution of particles in the long-time asymptotic
limit. We find that relative to the trap the surrounding particles remain
at equilibrium, but the gap to the nearest particle is proportional to
D+DT .
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An interesting generalization is to the case when the backward process
A � A+A is not limited to the particles alone, but the trap too may act
as a source. Again, the rate of generation of particles from the trap, vT need
not coincide with v, the production rate from the reverse birth reaction. We
find that if vT>0 the shielding property breaks down, and we are unable
to derive a complete exact description of the system. However, if the birth
rate is vT=v(1+DT�D), the effect of the trap is nullified: The particles
remain distributed as in equilibrium, as if the trap were not present.

The remainder of this paper is organized as follows. In Section II we
review the coalescence process and the IPDF method used for its analysis.
The model with a mobile trap is considered in Section III. In Section IV,
we generalize to the case where the trap may also act as a source. We
conclude with a summary and discussion, in Section V.

II. COALESCENCE AND THE IPDF METHOD

Our model(13, 14, 25) is defined on a one-dimensional lattice of lattice
spacing a. Each site is in one of two states: occupied by a particle A(v), or
empty (b). Particles hop randomly to the nearest neighbor site to their right
or left, at rate D�a2. Thus, in the continuum limit of a � 0 the particles
undergo diffusion with a diffusion constant D. A particle may give birth
to an additional particle, into a nearest neighbor site, at rate v�a (on
either side of the particle).3 If hopping or birth occurs into a site which is
already occupied, the target site remains occupied. The last rule means
that coalescence, A+A � A, takes place immediately upon encounter of
any two particles. Thus, the system models the diffusion-limited reaction
process

A+A # A (1)

The dynamical rules of the model are illustrated in Fig. 1.
An exact treatment of the problem is possible through the method of

Empty Intervals, known also as the method of Inter-Particle Distribution
Functions (IPDF).(25) The key concept is En, m(t)��the probability that
sites n, n+1,..., m are empty at time t. The probability that site n is
occupied is

Prob(site n is occupied)#Prob( v
n

)=1&En, n (2)
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Fig. 1. Reaction rules: (a) diffusion; (b) birth; and coalescence, (c) following diffusion, and
(d) following a birth event. The broken lines in (a) and (b) indicate alternative target sites.

The event that sites n through m are empty (prob. En, m) consists of two
cases: site m+1 is also empty (prob. En, m+1), or it is occupied. Thus, the
probability that sites n through m are empty but site m+1 is occupied, is

Prob( b
n

} } } b
m

v )=En, m&En, m+1 (3)

and likewise,

Prob( v b
n

} } } b
m

)=En, m&En&1, m (4)

With this in mind, one can write down a rate equation for the evolu-
tion of the empty interval probabilities:

�En, m

�t
=

D
a2 (En, m&1&En, m)&

D
a2 (En, m&En, m+1)

+
D
a2 (En+1, m&En, m)&

D
a2 (En, m&En&1, m)

&
v
a

[(En, m&En, m+1)+(En, m&En&1, m)] (5)

For example, the first term on the r.h.s. of Eq. (5) accounts for the increase
in En, m when the particle at the right edge of b

n
} } } b v

m
hops to the right

and the sites n,..., m become empty; the second-term denotes the decrease
in En, m when a particle at m+1 hops to the left into the empty interval
n,..., m, and so on.
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Equation (5) is valid for m>n. The special case of m=n corresponds
to En, n��the probability that site n is empty. It is described by the equation

�En, n

�t
=

D
a2 (1&En, n)&

D
a2 (En, n&En, n+1)+

D
a2 (1&En, n)

&
D
a2 (En, n&En&1, n)&

v
a

[(En, n&En, n+1)+(En, n&En&1, n)]

(6)

Comparison with Eq. (5) yields the boundary condition: En, n&1=1. The fact
that the [En, m] represent probabilities implies the additional condition that
En, m�0. Finally, if the system is not empty then limn � &�; m � +� En, m=0.

In many applications, it is simpler to pass to the continuum limit. We
write x=na and y=ma, and replace En, m(t) with E(x, y, t). Letting a � 0,
Eq. (5) becomes

�
�t

E=D \ �2

�x2+
�2

�y2+ E&v \ �
�x

&
�

�y+ E (7)

with the boundary conditions,

E(x, x, t)=1 (8)

E(x, y, t)�0 (9)

lim
x � &�; y � +�

E(x, y, t)=0 (10)

The concentration becomes

\(x, t)=&
�

�y
E(x, y, t)|y=x (11)

and one can also show that the conditional joint probability for having
particles at x and y but none in between, is

P2(x, y, t)=&
�2

�x �y
E (x, y, t) (12)

From P2 one obtains the ``forward'' (and also ``backward'') IPDF��the
probability that given a particle at x ( y) the next nearest particle to its
right (left) is at y (x):

pf (x, y, t)=\(x, t)&1 P2(x, y, t); pb(x, y, t)=\( y, t)&1 P2(x, y, t)

(13)
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The IPDF method can also handle multiple-point correlation func-
tions.(14) Let En(x1 , y1 , x2 , y2 ,..., xn , yn , t) be the joint probability that the
intervals [xi , yi] (i=1, 2,..., n) are empty at time t. The intervals are non-
overlapping, and ordered: x1< y1< } } } <xn< yn . Then, the n-point
correlation function (the probability of finding particles at x1 , x2 ,..., xn at
time t) is given by

\n(x1 ,..., xn , t)=(&1)2 �n

�y1 } } } �yn
En(x1 , y1 ,..., xn , yn , t)|y1=x1 ,..., yn=xn

(14)

For reversible coalescence, the En satisfy the partial differential equation:

�
�t

En(x1 , y1 ,..., xn , yn , t)=D \ �2

�x2
1

+
�2

�y2
1

+ } } } +
�2

�x2
n

+
�2

�y2
n+ En

&v _\ �
�x1

&
�

�y1++ } } } +\ �
�xn

&
�

�yn+& En

(15)

with the boundary conditions

lim
xi A yi or yi a xi

En(x1 , y1 ,..., xn , yn , t)=En&1(x1 , y1 ,..., x3 i , y3 i ,..., xn , yn , t)

(16)

and

lim
yi A xi+1 or xi+1 a yi

En(x1 , y1 ,..., xn , yn , t)=En&1(x1 , y1 ,..., y3 i , x3 i+1 ,..., xn , yn , t)

(17)

For convenience, we use the notation that crossed out arguments (e.g. x3 i)
have been removed. The En are tied together in an hierarchical fashion
through the boundary conditions (16) and (17): one must know En&1 in
order to compute En .

As a trivial example, consider the homogeneous steady state of revers-
ible coalescence. This is in fact an equilibrium state, which satisfies detailed
balance. The particles are simply distributed completely randomly��a state
which maximizes their entropy. One obtains

En, eq=exp[&#[( y1+x1)+ } } } +( yn&xn)]] (18)

and

\n, eq(x1 , x2 ,..., xn)=#n (19)

where ##v�D is the particle concentration at equilibrium.
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III. COALESCENCE WITH A MOBILE TRAP

We now consider the coalescence model but with a trap which diffuses
with a diffusion constant DT : In the discrete representation, the trap hops
to its right or left at rate DT �a2. A particle that hops into the trap is
irreversibly captured by it. Similarly, when the trap hops onto an occupied
site it captures the particle in that site. It is convenient to analyze the
system in the trap's frame of reference. In this view, the trap remains static
at a site which we choose to be the origin; n=0. When the trap does not
move (in the lab frame of reference) the changes to En, m are described by
Eq. (5). A motion of the trap is perceived as a coherent opposite motion of
the particles in the trap's reference frame. Thus, the changes to En, m due to
the motion of the trap are:

�
�t

(En, m)trap=
DT

a2 [(En+1, m+1&En, m+1)+(En&1, m&1&En&1, m)

&(En, m&En&1, m)&(En, m&En, m+1)] (20)

For example, the first term on the r.h.s. denotes the possibility that site
n+1 is occupied while the subsequent sites n+2, n+3,..., m+1 are empty,
and the trap hops to the right: In the trap's frame of reference the particle
at n+1 seems to hop to the left, thereby clearing the [n, m]-interval.
Notice that it is important to make sure that site m+1 is empty, since
otherwise site m would become occupied as the trap moves to the right.

Putting together all the terms in (5) and (20), and passing to the
continuum limit, we obtain

�
�t

E=(D+DT) \ �2

�x2+
�2

�y2+ E+2DT

�2

�x �y
E&v \ �

�x
&

�
�y+ E (21)

which is now valid in the infinite wedge 0<x< y. The term with the mixed
derivative is special: it arises because of the correlated motion of the par-
ticles in the reference frame of the trap.

The trap at n=0 could be realized by holding that site empty, at all
times. Thus, it follows that E1, m=E0, m , which results in the boundary con-
dition (in the continuum limit)

�
�x

E(x, y, t)|x=0=0 (22)
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In addition, the boundary condition (10) becomes

lim
y � �

E(x, y, t)=0 (23)

while (8) and (9) still apply, without change.
We now search for a solution of Eq. (21), with the boundary condi-

tions (8), (9), (22), and (23), in the long-time asymptotic limit, �E��t=0.
It is simple to find eigenfunctions which obey Eq. (8), and other eigenfunc-
tions which obey Eq. (22), but we were unable to devise a systematic
method for finding the linear combinations that would satisfy both condi-
tions simultaneously. Instead, we offer a solution based on the newly dis-
covered property of ``shielding'' in the coalescence model.(24, 26)

In the steady state of the coalescence model with a static trap, it is
found that the particles are distributed randomly, exactly as in the equi-
librium state of the homogeneous, infinite system (end of Section II). The
system is then fully characterized by p(z)��the density distribution function
of the distance between the trap and the nearest particle to the trap, z. The
nearest particle effectively shields the remaining particles from the trap
(Fig. 2). As we show below, the same shielding effect takes place even when
the trap is mobile.

Assuming that shielding holds, let E(x, y | z) be the conditional prob-
ability that the interval [x, y] is empty, given that the nearest particle to
the trap is at z, then:

1, x< y<z
E(x, y | z)={0, x<z< y (24)

e&#( y&x), z<x< y

Fig. 2. Schematic illustration of the shielding effect: The particles in the shaded area are dis-
tributed randomly and independently from each other, as in equilibrium. The gap z between
the particles and the trap follows the probability density distribution p0(z).
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Hence,

E(x, y)=|
�

0
E(x, y | z) p(z) dz=|

�

y
p(z) dz+e&#( y&x) |

x

0
p(z) dz

=1&F( y)+e&#( y&x) F(x) (25)

where in the last equation we introduced the definition

F(z)#|
z

0
p(z$) dz$ (26)

If the hypothesis of shielding is correct, the particle concentration can be
obtained from Eqs. (11) and (25):

\(x)= p(x)+#F(x) (27)

Substituting E(x, y) from Eq. (25) into Eq. (21), in the stationary
limit, the variables separate:

_(D+DT)
�2

�x2 F(x)+v
�

�x
F(x)& e#x=_(D+DT)

�2

�y2 F( y)+v
�

�y
F( y)& e#y

(28)

and so, one is lead to the conclusion that

(D+DT)
d 2

dz2 F(z)+v
d
dz

F(z)=C$e&#z (29)

where C$ is a constant.
The general solution of Eq. (29) is

F(z)=A+Be&#$z+Ce&#z (30)

where A, B, and C=C$D2�v2DT are constants, to be determined from
boundary conditions. From the definition of F, we have; F(0)=0,
limz � � F(z)=1, and F(z)�0. The boundary condition due to the
presence of the trap (Eq. (22)) translates into dF�dz| z=0=0. Thus, we find

F(z)=1+
D

DT

e&#z&
D+DT

DT

e&#$z (31)
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where #$#v�(D+DT). It then follows that

p(z)=
v

DT

(e&#$z&e&#z) (32)

From p(z) one immediately obtains the average distance between the trap
and the nearest particle: (2D+DT)�v, as well as the particle concentration
in the trap's frame of reference (Eq. (27)):

\(x)=#(1&e&#$x) (33)

The last result is similar to the one obtained for a static trap, only that the
width of the depletion zone near the trap is 1�#$=(D+DT)�v, instead of
1�#=D�v.

Our original goal of finding the empty interval probability has now
been achieved. Using (25) and (31), we get

E(x, y)=e&#( y&x)+
D+DT

DT

e&#$y[1&e&(#&#$)( y&x)] (34)

This solution can be verified by direct substitution in Eq. (21) and in the
boundary conditions (8), (22), and (23). The fact that we have found a
solution proves that shielding indeed takes place, even with a mobile trap.
On the other hand, we have merely shown that E(x, y) is consistent with
the shielding assumption. We now wish to show that the same is true for
the whole hierarchy of En 's, and hence for all n-point correlation functions.

If the particles are distributed as implied by shielding, then, following
a reasoning similar to that which led to Eq. (25), we should have

En(x1 , y1 ,..., xn , yn)=1&F( yn)+e&#( yn&xn)[F(xn)&F( yn&1)]

+ } } } +e&#[( yn&xn)+ } } } +( yi&xi)][F(x i)&F( y i&1)]

+ } } } +e&#[( yn&xn)+ } } } +( y1&x1)]F(x1) (35)

It is easy to confirm that these functions fulfill the boundary conditions
(16) and (17). Equation (15) is also satisfied, provided that F satisfies the
same equation as above, Eq. (29), with the same boundary conditions.
That is, the solution found above for F, combined with Eq. (35), solves the
problem of the En . Indeed, using Eqs. (27), (14), and (35), we find the
n-point correlation function:

\n(x1 ,..., xn)=\(x1) #n&1 (36)

exactly as we expect from a system with the shielding property.
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IV. COALESCENCE WITH A TRAP-SOURCE

We now wish to consider a further generalization of the trapping
problem. Suppose that the trap is imperfect, in the sense that it may also
act as a source: the trap gives birth to A particles into the site next to it,
at rate vT�a. When DT=D and vT=v the trap is identical to the rest of the
particles (only that the system is empty to the left of the trap). Thus, such
a trap-source might also be viewed as a special, tagged particle, charac-
terized perhaps by a different diffusing constant and back reaction rate.
The model constitutes a modest first step towards the understanding of the
more realistic situation where the size of aggregates matters, and clusters
diffuse and give birth at different rates, determined by their accumulated
mass. A very recent application is to the evolution of bacterial colonies living
near a patch of nutrients. Nelson et al., (27, 28) analyze such experiments with
a diffusion-limited coalescence model with a source (modeling the nutrients)
similar to ours.

The evolution equation for empty intervals in the trap-source model is
identical to that of a perfect trap (Eq. (21)). The birth of particles from the
trap affects only the boundary condition at x=0: it is no longer true that
the trap may be realized by simply holding site n=0 empty. To derive the
appropriate boundary condition we consider the total changes to En, m ,
which are obtained by putting together Eqs. (5) and (20). The case of n=1
needs to be considered separately, since we do not know what is E0, m . The
changes to E1, m , including birth from the trap, add up to:

�
�t

E1, m=
D
a2 [(E1, m&1&E1, m)&(E1, m&E1, m+1)+(E2, m&E1, m)]

+
DT

a2 [(E2, m+1&E1, m+1)&(E1, m&E1, m+1)+(E1, m&1&E1, m)]

&
v
a

(E1, m&E1, m+1)&
vT

a
E1, m (37)

Comparison of this equation with that for general n, when n=1, yields the
discrete boundary condition:

\D
a2+

v
a+ (E1, m&E0, m)+

DT

a2 (E1, m&1&E0, m&1)=
vT

a
E1, m (38)
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Notice that when vT=0 this reduces to E0, m=E1, m , as for a perfect trap.
Passing to the continuum limit, the boundary condition for the trap-source
becomes

(D+DT)
�

�x
E(x, y, t)|x=0=vT E(0, y, t) (39)

We now seek a solution to Eq. (21), in the stationary limit �E��t=0,
and which satisfies the boundary conditions (8), (9), (23), and (39). Assum-
ing that shielding holds we follow the same steps as in Section III and we
arrive at exactly the same result; F(z)=A+Be&#$z+Ce&#z, only that now
the boundary condition dF�dz| z=0=0 is replaced by:

(D+DT) e&#z d
dz

F(z)| z=0=vT[1&F(z)] (40)

from Eq. (39). (Again, notice that when vT=0 one recovers the condition
dF�dz| z=0=0.)

From the boundary condition F(�)=1, we obtain A=1. Further-
more, from F(0)=0 we get B=&(1+C). Finally, from the boundary con-
dition due to the trap-source, Eq. (40), we get

_vT

v
#$ e(#&#$) z&1& (1+C )=\vT

v
#$&#+ C (41)

This condition cannot be satisfied for all z generically, and so one must
conclude that shielding does not take place in the system with a trap-source.
On the other hand, for the special case that C=&1 and #$vT �v=#,
Eq. (41) is satisfied. In this case F(z)=1&e&#z, which leads to E=
e&#( y&x) and \(x)=#. That is, the particles are distributed exactly as in
equilibrium, as if there were no trap! Thus, there exists a whole class of
states which are equivalent to the equilibrium state of the infinite,
homogeneous system, without a trap. The equivalent states are charac-
terized by the relation

vT=v \1+
DT

D + (42)

For these states the effect of the trap is nullified. A larger diffusivity of the
trap, DT , (i.e., a larger trapping efficiency) is exactly compensated by an
increasing rate of birth vT from the trap-source.
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An interesting case is when DT=D and vT=v. Then the trap is identical
to the surrounding particles. Notice, however, that this is not a ``special''
state (Eq. (42) is not satisfied), and hence we conclude that at the equi-
librium state the system seems inhomogeneous from the point of view of a
tagged particle. To shed some light on these baffling results, we first point
out that since the equilibrium state is homogeneous it is perceived without
change by any moving observer which does not interact with the particles,
including random walkers. [Indeed, the equilibrium state E=e&#( y&x) is a
steady-state solution of Eq. (21).] Imagine then an observer diffusing
through the system with diffusion constant DT, and which does not inter-
act with the particles. From the point of view of the observer he is static,
and the average concentration of particles is constant and equal to #.
Ignoring the half infinite line to his left, the observer could interpret
crossings of particles from right to left as ``trapping'' events, provided that
he also interprets crossings from left to right as ``birth'' events. The
apparent rate of birth (crossings from left to right) would be vT�a=
n[(D+DT)�a2+v�a], where n=#a is the average number of particles at
the site occupied by the observer. Passing to the continuum limit, we
recover the ``equivalence'' condition, Eq. (42). (Alternatively, one could use
the exact discrete result: #=v�(D+va), to obtain the discrete analogue of
the equivalence condition: vT=v[1+DT�(D+va)].)

Although shielding breaks down when the trap acts also as a source,
one may still look for a solution to the problem in more conventional
ways. We were unable to find an analytic solution; however, the discrete
equations can be integrated numerically, and the particle system may also

Fig. 3. Concentration profile with a trap-source: Shown are results from numerical simula-
tions (symbols) on a lattice of 25,000 sites, averaged over a2�D=106 time steps; as well as
results obtained from numerical integration of the exact discrete equations (solid curves). The
cases shown are for vT �v=2, 1, 0.5, and 0 (top to bottom), with DT=0.
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be simulated on a computer. Computer simulations confirm the fact that
shielding breaks down when vT>0, and that the particle concentration
beyond the nearest particle to the trap is no longer as in equilibrium. In
Fig. 3 we show typical results for various values of vT . As vT increases, the
concentration of particles near the trap increases, from zero (for vT=0),
to # (for the appropriate ``special'' rate, Eq. (42)), and to concentrations
larger than #.

V. DISCUSSION

We have studied diffusion-limited coalescence, A+A # A, in the
presence of a diffusing trap, and we have found an exact description of the
long-time asymptotic limit, using the IPDF method. When the trap is per-
fect, the system displays a ``shielding'' property: the particle nearest to the
trap effectively shields the other particles from the trap. That is, the par-
ticles remain distributed as in the equilibrium steady-state of the infinite
homogeneous system (without a trap), and only the distance between the
trap and the nearest particle is unusual. This distance grows linearly with
DT��the diffusion coefficient of the trap.

For an imperfect trap which also acts as a source the shielding
property breaks down and we were unable to find an analytic solution, but
the exact equations can then be solved numerically. We have found an
intriguing ``equivalence principle'': all systems with vT=v(1+DT �D) are
equivalent to each other. The trap then seems invisible and the particles
remain distributed as in the homogeneous equilibrium state.

Our system is a generalization of von Smoluchowski's model for reac-
tion rates; the particles react with each other, and the trap is mobile. The
reaction rate equals the rate of influx of particles into the trap. This rate
is k=n[(D+DT)�a2+v�a], where n is the average number of particles at
the site adjacent to the trap. For a perfect trap, we use the result of
Eq. (33) to find n=a2(d\�dx)x=0=a2##$=a2v2�D(D+DT), and so, in the
continuum limit (a � 0) we get k=v2�D. Curiously, the trapping rate is
independent of the diffusivity of the trap, DT . A faster trap visits more sites
per unit time, but it also depletes its immediate neighborhood more effec-
tively, and the two effects cancel each other. For the case of a trap-source,
we have failed to obtain an analytic expression for n, and hence we could
compute k only numerically.

There remain several interesting open problems. We have considered
only the steady state of our model, but the transient is also of interest. For
perfect traps the shielding property holds at all times (provided that the
initial condition is compatible with it) and one can exploit it to find an
analytic answer. An important open problem is that of finding a systematic
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method for solving the evolution equation for empty intervals. We were
fortunate to come across a solution which obeys shielding, but shielding
does not always hold, as for example for non-ideal trap-sources. Indeed,
most remaining open questions concern the model with a trap-source. An
exact analytic solution for this case is still missing. We have managed to
prove, however, that the solution could not be of the form of a sum of
exponentials (finite or infinite), other than for the special states, equivalent
to equilibrium.

An interesting question is whether there exist other classes of equiv-
alence. That is, are there any states equivalent to each other, but not to the
equilibrium state?��we have managed to prove that such states do not
exist, at the level of the empty interval probability. However, there remains
the possibility that different systems might share the same concentration
profile, in spite of differences in their empty interval probabilities. Whether
such states exist remains an open challenge.
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